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There has been a revolution within the field of machine learning that has given rise to new and im-
proved methods for visual recognition the last years. The leading technique is the convolutional neu-
ral network (CNN), and this paper covers implementation of these networks and their potential.
Through looking at previous work, the paper shows that leading methods today are networks based
on previously proposed techniques, and they are usually fine-tuned networks. Existing methods give
classification accuracy up to 99,47% (Nogueira, Penatti, & dos Santos, 2016) and segmentation accu-
racy up to 88.5% (Marmanis et al., 2016). Both methods are proposed in papers released this year,
which indicates that the methods will keep on improving. The paper also provides an example of a
possible problem that could be solved with the existing technology — detection of buildings in satellite
images. This could be done by building a CNN which takes a combination of multispectral images
and a digital surface model as input.
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1 Introduction
The field of machine learning has increased
in popularity recent years, and its tech-
niques help us solve complex problems. Com-
puters don’t have to be explicitly pro-
grammed, but can instead change and im-
prove their algorithms, and thereby learn
from the given data. This enables us to make
use of the enormous amounts of data that is
being, and has been, collected over the years.
Artificial intelligence and machine learn-
ing have been around since the 1950's. Some
years earlier McCulloch & Pitts (1943) pre-
sented their paper about a computational
model for neural networks. It was not feasi-
ble to realize their ideas until computing ca-
pacity was adequate in the 1950’s. In the
1960’s and 1970’s methods within neural
networks evolved slowly, and there was a
campaign to discredit neural networks. How-
ever, a few researchers continued the work
on problems as pattern recognition (Macu-
kow, 2016). Still, important foundations for
later research were established in this peri-
od. It is given that the continuously improve-
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ment of computing hardware has played a
role in the development of neural networks,
and in the 1980’s research within the field
got a new boost. In the 1990's significant ad-
vances were made in all areas of artificial in-
telligence. Scientists began creating pro-
grams for computers to analyse large
amounts of data and draw conclusions from
the results (Marr, 2016; Schmidhuber, 2015).

In 2012, a new revolution within the use of
machine learning for visual recognition
tasks began. The idea of deep learning was
introduced trough a new composition of a
network called a Convolutional Neural Net-
work (CNN). Contrary to popular belief,
CNN was not invented in 2012 but already in
the 70’s (Nielsen, 2015). However, it wasn’t
until 2012 that CNN showed its massive ca-
pacity within visual recognition. Again, one
major factor was the improvement in hard-
ware. Finally, computers were good enough
to train a CNN within reasonable time. An-
other reason was available datasets, which
made it possible to properly train the net-
works (Russakovsky et al., 2015). Ever since,
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CNN s have been the leading technique with-
in visual recognition.

Still, there seems to be a general belief
that the technology is not good enough, and
probably never will be. This is an assumption
that might not be correct, and may be contra-
dicted through thorough research of the
state-of-the-art techniques.

In recent years there has also been a sig-
nificant increase in the number of different
satellite sensors, which deliver large vol-
umes of very high resolution (VHR) remote-
ly sensed images. This opens for new ways
to retrieve and process geographical infor-
mation. Even though some software exists
that supports semi-automated visual recog-
nition (GISGeography, 2016), in practice
most images are still classified, labelled,
and drawn manually (Marmanis et al.,
2016). However, the rapid development
within machine learning over the last years
have given rise to new research, where neu-
ral networks are used in the extraction of
information from remotely sensed images.
Examples of such research can be found in
He et al. (2015), Long et al. (2017) and Cas-
telluccio et al. (2015).

Since methods for machine learning might
be unfamiliar for many in the remote sensing
community, this paper will give a thorough
introduction to fundamental techniques
within artificial intelligence and neural net-
works, before the focus shifts towards the re-
cent development within the field.

The objective of this paper is to:
1. Introduce convolutional neural networks
(CNNs).

2. Look at state-of-the-art techniques for
visual recognition within machine learn-
ing over the past years.

3. Assess how current techniques may be
employed to extract geographical informa-
tion in remote sensing images.

2 The Basics of Machine Learning for
Visual Recognition

Visual recognition is one of the fastest grow-
ing fields of artificial intelligence. Even
though the amount of visual data available
today is enormous, it is still the most difficult
data to harness (F.-F. Li & Karpathy, 2015).
We have a hard time grasping the content of
an image using machines. Take for example
the task of determining if an image is of a
cat. There are so many possible images (Fig-
ure 1), and a machine must know what the
common denominators are for all of them.
Visual recognition is split into different tasks
(Figure 2). Among them are:

— Classification: Determining which of
specified classes an image belongs to. Such
classes may, for example, be “Cat”, “Dog”
and “Rabbit”.

— Classification + localization: As well as
classifying an image, a bounding box de-
scribing where in the image the object ex-
ists is determined.

— Object Detection: What objects exist in
the image is determined, including the
bounding box for each object.

— Instance Segmentation: The shape of the
objects in the image is determined by return-
ing all pixels that belong to a specific object.

of a cat. Source: (F.-F. Li & Karpathy, 2015).
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Figure 2: Examples of visual recognition tasks. Source: (F.-F. Li & Karpathy, 2015).

2.1 Neural networks

To understand convolutional neural net-
works, it is first important to understand the
concept behind a neural network. Neural
Networks are modelled as collections of
nodes (neurons) which are connected in a di-
rected acyclic graph (Figure 3).

Hidden layers

output layer

Input layers

Figure 3: A neural network consist of an input
layer, an output layer, and depending on the
model, a number of hidden layers in-between.
This example has two hidden layers, and the
layers are fully connected. Source: (Nielsen,
2015).

Each connection between nodes has a
weight, w, that represents how “important”
the specific connection is. Each node takes
the weighted sum! of the input and process it
through an activation function, f{x). The out-
put of the activation function gives the out-

put of the node. There are different activati-
on functions, but the one proven to work best
is the ReLU (Rectified Linear Unit) function
(Figure 4). It is used in almost all of the sta-
te-of-the-art networks today — as will be
shown in Section 3.

ReLU computes the function fAx) =
max(0,x), and it was found to accelerate the
convergence of stochastic gradient descent?.
However, an undesired property of the ReLU
function, is that the units are fragile during
training, and can “die.” If a unit “dies” it
means that the weights are updated in such
a way that the node never activates again on
any data point. The gradient flowing through
the unit will forever be zero.

10
8 RelLU
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0 for x<0
f(x) = { x for x=0
4
2
0
-2
-8 -4 -2 0 2 4 6

Figure 4: The rectified linear unit.

1. The weighted sum is the sum of all inputs times its weight
2. Stochastic gradient descent is a method for finding the minimums or maximums by iterations.
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A bias node is a node that does not take an
input, but instead has a constant value. The
bias nodes are added to provide flexibility to
the model. Take for instance a small network
with two input nodes, and an output node
(Figure 5). If the input nodes (x1 and x2)
have the value zero, the weighted sum of the
inputs would also be zero, no matter the val-
ue of their weights (w1 and w2). The network
would lose its ability to change its output,
and thereby it’s ability to learn. If we, howev-
er, add an extra node with a constant value —
the bias node — the network would be able to
change the weight for the bias node, and
thereby keep its ability to change the output
of the network.

X1 | 1
\/K .
 f )— —=¥
‘\\_7//
TN W2
X2 | )
o w3
Bias

Figure 5: An example of a small network
where a bias node is added to increase the
models’ flexibility. If x; = x5 = 0 the output y
would be the same no matter how the values
for w; and w, changed. However, when the
bias node is added, weight w3 can be
changed — and thereby the output.

2.2 Convolutional neural networks

CNNs are types of neural networks, and are
as well made up of nodes that have learnable
weights and biases. However, CNNs make
the explicit assumption that the inputs are
images. This allows encoding of certain prop-
erties into the architecture that cause a vast
reduction in the number of parameters in the
network. This is an important reason why
CNNss are fast, despite their depth.

Since CNNs assume an image as input, it
arranges its nodes in three dimensions —
width, height, and depth. The width and
height corresponds to the image size, and the
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depth represents the three channels of an
image; red, green and blue. Most modern
CNNs have three important layers — convo-
lution layer, pooling layer and a fully con-
nected layer (Karpathy, 2015).

Convolution layer

The convolution layer is the core building
block of CNNs, and contains filters. A popu-
lar terminology for the convolution operation
is to imagine a flashlight shining on an ima-
ge. The area the flashlight shines on, repre-
sents the size of the filter. The flashlights
then slide across the image, looking at small
areas, peace by peace. As the filter slides
across, it multiplies the values in the filter
with the pixel values of the image, and sums
them up (computing dot products). Every
unique location in the input space therefore
produces one number, and all these numbers
are combined into a matrix called an activa-
tion map (Figure 6).

Each of the filters look for certain features
in the image. Such features may, for exam-
ple, be a curve, an edge or a feature of a spe-
cific color. Higher level filters (filters deeper
into the network) look for combinations of
these simpler features. The deeper into the
network, the more complex the features be-
come (Figure 7). The numbers in the activa-
tion maps therefore give an indication of, to
what degree, the feature exists in the image
and in which parts.

Since each filter has different nodes that
look at different parts of the image, the
network becomes locally connected. This me-
ans that only some of the neurons in one lay-
er are connected to a neuron in the neighbor-
ing layer.

A convolution layer takes four hyper pa-
rameters:

K = Number of filters

— F = The filters spatial size

— S = Stride, how much the filter is moved
each step of the convolving

— P = Amount of zero padding

KART OG PLAN 2-2017
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Figure 6: Visualization of a 4 x 4 filter convolving around an input and producing an activa-

tion map. Source: (Deshpande, 2016).
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Figure 7: Example of features that the filters in a convolution layer look for at different levels
in a network. The deeper into the network (higher level), the more complex the features are.

Source: (F.-F. Li & Karpathy, 2015).

Padding means that you expand the spatial
area by adding borders of zeros (Figure 8). Pad-
ding prevents the spatial area from decreasing
when convolving the layers, and the necessary
amount depends on the size of the filter. If you
have a filter of size F' x F, you should use zero
padding with (F'— 1)/2 borders.

Pooling layer

In a CNN there is often pooling layers in
between the convolution layers. The pool-
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ing layers are used to reduce the amount of
parameters and computational complexity
of the network by reducing the spatial size
of every depth of the input. The pooling lay-
er that has shown to perform best is the
MAXPOOL (Karpathy, 2015). It traverses
the matrix with a filter of size F x F and se-
lects the largest element in the submatrix
at each step (Figure 9). In other words, it
saves the most significant part of the pic-
ture.
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Figure 8: Visualization of a matrix that is zero padded with one border.
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Figure 9: Example of the maxpool operation, where the largest element in each submatrix is

chosen.

2.3 Training and testing

A network’s ability to learn is achieved
through a training process, where the net-
work is given a set of inputs with correspond-
ing known outputs. By adjusting the weights
that control the signal between two nodes,
the network tries to map the input with the
desired output. If the network generates a
“good” output (output similar to desired out-
put), there is no need to adjust the weights. If
the network produces a poor output, the sys-
tem adapts by altering the weights. This ad-
justment is done through a process called
backpropagation.

Backpropagation

The training algorithm backpropagation can
be split into 4 parts; the forward pass, the
loss function, the backward pass and the
weight update.
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The algorithm compares the calculated
output of the network with the desired out-
put. It calculates the difference (error) be-
tween the two values, and this computed er-
ror is fed backward through the network,
and used to adjust the weights so that the
overall error of the network decreases. The
goal of the process is to minimize the amount
of loss, and the process can be seen as an op-
timization problem (Figure 10). The weights
are adjusted according to the function:

W=wi —p.- 2L
dW

where Wis the weight, L is the value, and 7 is
the learning rate. The learning rate, n, is a
chosen parameter. A high learning rate
means that bigger steps are taken during up-
dating of the weights, and it may take the
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model less time to reach the optimal set of
weights. However, if the learning rate is too
high it may lead to jumps that are too large
to obtain a convergence of the error.

Error

W2

Figure 10: The task of minimizing the loss
can be visualized through a 3D parabola,
where the weights of the neural net are the
independent variables, and the dependent
variable is the loss. The goal is to adjust the
weights so that the loss decreases. In visual
terms we want to get the lowest point in our
3D object.

Overfitting

During training, a problem called overfitting
may occur. Sometimes your model fit your
training data perfectly, but it is still com-
pletely useless. The network has memorized
instead of generalized the training data and
does not know how to handle new data.

Dropout layer

One approach for decreasing the chance of
overfitting is to include dropout layers. The
dropout layer simply drops random sets of ac-
tivations by setting them to zero in the for-
ward pass. This prevents the network from
becoming too “fitted” to the training data,
since it has to learn how to provide the correct
output even after losing some activations.

Fine-tuned network
A curious property of modern deep neural
networks is that the networks tend to learn

filters such as Gabor filters®, edge and color
blob detectors in their first layers — inde-
pendent of the training set (Nogueira et al.,
2016). These filters are useful for many dif-
ferent tasks, and doesn’t have to be re-
learned for every new model. Training can
therefore be resumed with a new dataset on
a previously trained model, and this is called
fine-tuning a network.

3 Development within visual
recognition
A fair amount of publications on the topic of
visual recognition refers to the ImageNet IL-
SVRC (Large Scale Visual Recognition Chal-
lenge)(Karpathy, 2015; Krizhevsky, Sutske-
ver, & Hinton, 2012; J. Long, Shelhamer, &
Darrell, 2015; Springenberg, Dosovitskiy,
Brox, & Riedmiller, 2015). ImageNet is an
image database that was designed for use in
software research within visual recognition.
As of 2017, 14 million URLs of images have
been hand-annotated to indicate what ob-
jects are pictured. In 2010 ILSVRC was
founded, and since then, it has acted as an
annual software contest where research
teams submit software that competes to cor-
rectly classify and detect objects and scenes
in the images from the ImageNet database.
The challenge has attracted participants
from more than fifty institutions, and
among them teams from Microsoft and
Google (Russakovsky et al., 2015). The par-
ticipants are also allowed to submit closed
work, and commercial companies do not
need to reveal their code to be able to par-
ticipate. It is therefore a fair assumption
that the submitted work represents some
of the best methods within visual recogni-
tion since 2010. Several of the publications
described in this paper are from the Ima-
geNet challenge, as the winners of the con-
test is a good indicator for progress within
the field.

AlexNet (Krizhevsky, Sutskever, & Geoffrey
E., 2012)

2012 was a turning point within classifica-
tion and localisation due to the submission of

3. Gabor filter is a linear filter and is often used for edge detection.
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a network called AlexNet. It was the first
large-scale CNN, and it significantly outper-
formed previously implemented networks
(Deng et al., 2009). The network stacked
multiple convolutional layers on top of each
other, which at the time was uncommon, but
soon became the new norm.

ZF net (Zeiler & Fergus, 2014)
Zeiler and Fergus focused on increasing the

understanding of CNNs, and stated that
without a deeper understanding of the net-
works, future work would be based solely on
trial and error. They therefore proposed a
visualisation technique called deconvolution.
A deconvnet, was attached to every layer and
gave a path back to the image pixel. This
made it possible to examine what type of
structure had generated the specific activa-
tion map (Figure 11).

Figure 11: An example of activation maps and the actual structure (Zeiler & Fergus, 2014).

GoogLeNet (Szegedy et al., 2014)

A research team from Google presented a more
efficient network called GoogLeNet. Its main
contribution was the development of an Incep-
tion Model. By inserting 1 x 1 convolution
blocks before the expensive parallel blocks (Fig-
ure 12), they reduced the number of features
drastically, which made the network faster.

VGGNet (Simonyan & Zisserman, 2015)
Simonyan and Zisserman introduced a deep-

Filter
concatenation

er network, with up to 19 weight layers. In
order to reduce the number of parameters,
they used small filters of size 3 x 3, and a
stride of one. The design of the network in-
creased performance significantly.

ResNet (He et al., 2015)

Since the VGGNet showed how deeper
networks improve accuracy, He et al., (2015)
wondered: “Is learning better networks as
easy as stacking more layers?”. They therefo-

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

)

)

3x3 max pooling

Qi"tions 1x1 convolutions

Previous layer

Figure 12: GoogLeNet’s inception model, where a 1 x 1 convolution block is added to reduce
the number of parameters.
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re created a network that had a total of 152
layers — eight times the number of layers
that the VGGNet had. They dealt with the
increased depth by adding shortcut connec-
tions that made lower layers available to no-
des in a higher layer. They only wanted to
add a layer if it improved the performance, so
you may say that each layer was responsible
for fine-tuning the output from the previous
layer. Because of these shortcut connections,

Classification Errors

40
30
=
S 20
@
10

2011

2012 2013

Year

ResNet actually had a lower complexity than
VGGNet — despite the networks increased
depth.

Trimps-soushen (Russakovsky et al., 2015)
The team called Trimps-Soushen submitted
the winning work within both the task of
classification and localization in 2016. The
network used several pre-trained models, in-
cluding ResNet, as start parameters.

I Error %:

GoogLeNet

Trimps-Soushen

2014 2015 2016

Figure 13: Results from the classification task in ILSVRC from 2011-2016.
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Figure 14: Results from the localization task in ILSVRC from 2011-2016.
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3.1 Object detection

When CNN was introduced, new methods for
object detection followed. The first methods
consisted of using fast CNN classifiers for de-
tection. You simply tested every possible
bounding box in the image, and the one with
the highest classification rate was kept. The
methods then shifted towards giving region
proposals for the bounding boxes, instead of
trying them all.

R-CNN (Girshick, Donahue, Darrell, & Ma-
lik, 2014)

Region based CNN (R-CNN) was proposed
in 2014, and found region proposals for the
input image, lowering the number of possi-
ble regions to around two thousand. Each
region (box) in the image would be cropped
and warped to some fixed size, and then run
through a CNN classifier. The CNN then
had a regression head and a classification
head, that would correct the boxes that
were a little off, for example shifted or of
wrong size.

Faster R-CNN (Ren, He, Girshick, & Sun,
2015)

Even though R-CNN improved object detec-
tion a lot, it was really slow at test time.
Faster R-CNN solved this problem by shar-
ing computation of convolutional layers
across different region proposals.

HyperNet (Kong, Yao, Chen, & Sun, 2016)
A problem with the methods combining CNN
with region proposals is that they still test sev-
eral thousand different positions, and struggle
with small-size object detection and precise lo-
calisation. The network called HyperNet was
therefore proposed. HyperNet handles region
proposals and object detection jointly, by de-
signing hyperfeatures which aggregate hierar-
chical activation maps first, and then compress
them into a uniform space. Their method pro-
duces small numbers of object proposals while
guaranteeing high recalls.

As well as the HyperNet they also tweaked
their architecture to test a version called Hy-
perNet-SP where they speed up the network by
allowing a small decrease in accuracy. Table 1
and Table 2 shows the results of their methods.

Table 1: Results from comparing different detection methods on the PASCAL VOC 2012 data-
set for detection of nineteen different classes. Bold number represent the highest accuracy num-
ber for the specific class. As can be seen, HyperNet is the network that has the most classes with
the highest accuracy. However, the difference between HyperNet and HyperNet-SP is very

small. Source: (Kong et al., 2016)

Approach mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Dog Horse Mbike Per- plant
son

Fast R-CNN 68.4 823 784 70.8 523 387 778 716 89.3 442 875 805 808 720 35.1

Faster R-CNN 70.4 849 798 743 539 498 775 759 885 456 869 817 809 79.6 40.1

HyperNet 714 842 785 73.6 55.6 53.7 78.7 79.8 877 49.6 86.0 817 833 81.8 48.6

HyperNet-SP 71.3 84.1 783 733 555 536 786 79.6 875 495 856 81.6 832 81.6 48.4

Table 2: Overview of running time for object detection methods on the PASCAL VOC 2012 da-
taset. The times are given in milli seconds, and shows that the time needed for calculating pro-
posals and detection are much less for the HyperNet-SP. Source: (Kong et al., 2016).

Approach Conv (shared) Proposal Detection Total

Fast R-CNN 140 2260 170 2570
HyperNet 150 810 180 1140
HyperNet-SP 150 20 30 200
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Figure 15: Results from the object recognition task in ILSVRC from 2013-2016.

3.2 Image Segmentation

Image segmentation has also improved con-
siderably since the revolution of deep learn-
ing. The idea behind segmentation is to look
at patches of the input image and classify
each patch through a CNN. For each pixel in
the image, a patch is created from its sur-
rounding pixels. The patch is classified, but
instead of assigning the class to all the pixels

in the patch, it is only assigned to the center
pixel — the pixel that created the patch (Fig-
ure 16). A problem with this approach is the
down-sampling of the image through strides
and pooling layers. The output image will be
smaller (less pixels), thus less accurate than
the input image. Another problem is that for
each pixel a patch of the image is classified by
a CNN, which is computationally expensive.

Extract Run through Classify
patch a CNN center pixel
- R @ -
Repeat for o
every pixel

grass

Figure 16: Visualization of the basic idea behind image segmentation. Each pixel in
the image is classified to the value that its surrounding paich is classified to, by the
use of a CNN. Source: (F. Li & Karpathy, 2015).
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Fully Convolutional Networks (J. Long et
al., 2015)

In 2015, a new fully connected network was
proposed that used deconvolution to up sam-
ple the image after classification (Figure 18).
They also added skip-connections similar to
ResNet (He et al., 2015), that improved the

borders of the segmentation (Figure 17). The
network dramatically improved perfor-
mance, while also speeding up the learning
process (J. Long et al., 2015). The network
got, among other results, a pixel accuracy * of
85,2%, which showed state-of-the-art perfor-
mance.

Skip connections = Better results

Figure 17: Adding skip-connections to the network improved, especially, the borders of the seg-
mentation. Source: (J. Long et al., 2015)
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Figure 18: Noh, Hong, & Han, (2015) used deconvolution to upsample the image after classi-

fication.

4 Visual recognition in remote sensing
images
Remote sensing methods measure the amount
of electromagnetic energy reflected from ob-
jects, and mathematical and statistical algo-
rithms are applied to the results to extract val-
uable information. The remotely sensed data
may be obtained systematically through very
large geographical areas, and is now critical to
the successful modelling of numerous natural
and cultural processes (Jensen, 2014).

The previous section showed work on visual
recognition, but the datasets used in the train-

ing and testing were never aerial or remotely
sensed images. A prominent question will be
how we can use existing neural networks for
the remote sensing domain in the best way.

Towards better exploiting CNNs (Nogue-
ira et al., 2016)

Nogueira et al. (2016) stated that it is not al-
ways feasible to fully design and train a new
CNN. They wanted to both test how different
networks performed, but also what strategy
best benefitted existing CNNs. The three strat-
egies they tested were: (1) fully trained CNNSs,

4. Pixel accuracy is the number of pixels correctly classified divided by the amount of pixels.
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(2) fine-tuned CNN’s and (3) pre-trained CNNs.
By using three remote sensing datasets they
tested six popular CNNs — among them: Alex-
Net, VGGNet and GoogLeNet.

Their results showed that fine-tuning
tends to be the best strategy. They achieved
classification accuracy up to 99.47% when
fine-tuning GoogLeNet, which is higher accu-
racy than any other networks at present.
However, the most important discovery was
that fine-tuning works really well, even
when the images used for fine-tuning are dif-
ferent from the images that the network was
originally trained for.

Semantic segmentation of Aerial Imagery
(Sherrah, 2016)

The conclusion from Nogueira et al. (2016)
also coincides with the results from Sherrah
(2016). They proposed a fine-tuned fully con-
volutional network that also gave state-of-
the-art results for semantic segmentation .
The fine-tuned network showed superior re-
sults compared to the network trained from
scratch. This shows that fine-tuning existing
networks doesn’t only work for the task of

Input Image

%)

Image 1 Image 2

5 Conclusion

Based on the theory and techniques covered
in this paper it is likely that software can
help automation of visual recognition in re-
motely sensed images. As was shown in Sec-

Image 1
Figure 19: Example of results from the segmentation performed by Marmanis et al. (2016).

classification, but also for the task of segmen-
tation within the remote sensing domain.

Ensemble of CNNs (Marmanis et al., 2016)
In a publication on semantic segmentation,
Marmanis et al. (2016) also used semantic
segmentation. They used deconvolution to
undo the spatial down-sampling, and fully
convolutional networks to save the explicit lo-
cation of the classified pixels. They used very
high resolution aerial images, with less than
10 cm ground sampling distance® in their
work. Even though the images used was not
satellite images, the method still applies. The
only difference is that satellite images has
lower resolution, and would therefore have
lower accuracy. As well as the aerial images,
they also made use of a DEM®. They set up
two separate paths in the network for the two
types of input. They assumed that height- and
pixel-values have statistical differences that
would need different features for recognition,
and chose to merge the two paths at a very
high level. Their results showed segmenta-
tion accuracy up to 88.5%, which is state-of-
the-art results (Figure 19).

Segmentation result

Image 2

tion 4, existing methods have achieved clas-
sification accuracy up to 99.47% and seg-
mentation accuracy up to 88.5%. Taking into
consideration how much faster a computer
can process images than humans, this high

5. Ground sample distance (GSD) is the distance of the square one pixel in an image covers in the terrain
6. A digital elevation model (DEM) gives height measurements for the terrain. Depending on the model, it includes

objects (e.g. houses, trees).
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accuracy indicates unused potential. In
many ways, it is only your imagination that
sets the limit for how this technology can be
used. The most obvious within remote sens-
ing might be to help digitize images for cre-
ating maps, by segmenting and classifying
objects and areas. Aside from this, it could
also be used in change detection, monitoring
of animals, invasive plant ranges, etc.

One specific case that might be solved is
the mapping of rooftops from satellite imag-
es by performing semantic segmentation. As
was shown in Section 4, Marmanis et al.
(2016) proposed a network that used both
digital elevation model and images as input,
that gave state-of-the-art results. This is a
technique that could work well for recogniz-
ing buildings as well, since buildings have a
distinct increase in elevation, compared to
its surroundings.

Instead of only using RGB (red, green,
blue) matrices as input, it would likely give
higher performance to add a non-visible
specter as well (Bollinger, 2017). A good band
for distinguishing buildings from its sur-
roundings is the infrared band. However,
having five input matrices would increase
the complexity of the network drastically, so
removing one of the RGB matrices might be
necessary to lower the training time. Which
of the colors that would cause the least de-
crease in accuracy requires further research.

The papers described in Section 3 and 4
shows that there has been a huge improve-
ment within the field of visual recognition
the last four years, and that the best meth-
ods are from papers released in 2016 and
2017. This indicates that we are at the begin-
ning of the revolution within the use of deep
learning for visual recognition, and the
methods will most likely keep on improving.
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